AtomsMM
Release 0.1.0

Charlles R. A. Abreu

Apr 11, 2020






9

CONTENTS

Overview

1.1 Imstallation . . . . . . . e e e e e
1.2 Documentation . . . . . . . . . i it e e e e e e e e e e e e e e e e e e e e
1.3 Development . . . . . . . o . . e e e e e e e e e e e
Installation

Usage

Python API

4.1 COMPULETS o & v v o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
42 forces . . . .. e e e e e
43 INLEZIatOrS . . v v v i e e e e e e e e e e e e e e e e e e e e e e e e e
44 Propagators . . . . o vt e e e e e e e e e e e e e e e e e e e e e e e e e e
45 TEPOTLEIS . o v v v o e e e e e e e e e e e e e e e e e e e e e e
4.0 SYSEEIMIS & v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
A7 utils .. e e e
Contributing

5.1 BUugreports . . . . .o e e e e e e e e e e e e
5.2 Documentation improvements . . . . . . v v v v v vt e e e e e e e e e e e e e e e e
5.3 Featurerequests and feedback . . . . . . ... ... oo
54 Development . . . . . . . e e e e e e e e e e e
Authors

Changelog

Glossary

Bibliography

10 Indices and tables

Bibliography

Python Module Index

Index

—_

45
45
45
45
46

49

51

53

55

57

59

61

63







CHAPTER
ONE

OVERVIEW

AtomsMM is an OpenMM customization developed by the ATOMS group at UFRJ/Brazil.

¢ Free software: MIT license

1.1 Installation

git clone https://github.com/atoms—ufrj/atomsmm.git
cd atomsmm
python setup.py install

1.2 Documentation

https://atomsmm.readthedocs.io/

1.3 Development

To run the all tests run:

’tox

Note, to combine the coverage data from all the tox environments run:

Windows

PYTEST_ADDOPTS=--cov-append
tox

Other
PYTEST_ADDOPTS=--cov—-append tox



https://atomsmm.readthedocs.io/

AtomsMM, Release 0.1.0

2 Chapter 1. Overview



CHAPTER
TWO

At the command line:

INSTALLATION

git clone https://github.com/atoms—ufrj/atomsmm.git
cd atomsmm

python setup.py install




AtomsMM, Release 0.1.0

4 Chapter 2. Installation



CHAPTER
THREE

USAGE

To use AtomsMM in a project:

import atomsmm




AtomsMM, Release 0.1.0

6 Chapter 3. Usage



CHAPTER
FOUR

PYTHON API

4.1 computers

class atomsmm.computers.PressureComputer (system, topology, platform, properties={}, tem-
perature=None)
Bases: simtk.openmm.openmm.Context
An OpenMM Context extension aimed at computing properties of a system related to isotropic volume varia-
tions.

Parameters
* system (openmm.System) — The system. ..
* topology (openmm.app.Topology) — The topology. ..
* platform (openmm.Platform) — The platform. ..
* properties (dict(), optional, default=dict()) — The properties. ..

 temperature (unit. Quantity, optional, default=None) — The bath temperature used to com-
pute pressures using the equipartition expectations of kinetic energies. It this is None, then
the instantaneous kinetic energies will be employed.

get_atomic_pressure ()
Returns the unconstrained atomic pressure of a system:

2K+ W

3V
where W is the unconstrained atomic virial (see get_atomic_virial ()), K is the total ki-
netic energy of all atoms, and V is the box volume. If keyword femperature was employed in the
PressureComputer creation, then the instantaneous kinetic energy is replaced by its equipartition-
theorem average (K) = 3NatomskpT/2, where T is the heat-bath temperature, thus making P indepen-
dent of the atomic velocities.

P =

Warning: The resulting pressure should not be used to compute the thermodynamic pressure of a
system with constraints. For this, one can use get_molecular_pressure () instead.

get_atomic_virial()
Returns the unconstrained atomic virial of the system.

Considering full scaling of atomic coordinates in a box volume change (i.e. without any distance con-
straints), the internal virial of the system is given by

W==3 ryE(ry),

(2]



http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.Context.html

AtomsMM, Release 0.1.0

where E’(r) is the derivative of the interaction potential as a function of the distance between two atoms.
Such interaction includes van der Waals, Coulomb, and bond-stretching contributions. Angles and dihe-
drals are not considered because they are invariant to full atomic coordinate scaling.

Warning: The resulting virial should not be used to compute the thermodynamic pressure of a system
with constraints. For this, one can use get_molecular_virial () instead.

get_bond_virial ()
Returns the bond-stretching contribution to the atomic virial.

get_coulomb_virial ()
Returns the electrostatic (Coulomb) contribution to the atomic virial.

get_dispersion_virial ()
Returns the dispersion (van der Waals) contribution to the atomic virial.

get_molecular_pressure (forces)
Returns the molecular pressure of a system:

2‘Z:(vIHO WIHO
p = 28mol + Wmol

3V
where Wy, is the molecular virial of the system (see get_molecular _virial ()), Kunol 1S the
center-of-mass kinetic energy summed for all molecules, and V' is the box volume. If keyword temperature

is was employed in the PressureComputer creation, then the moleculer kinetic energy is replaced by
its equipartition-theorem average (K1) = 3NmoiskpT /2, where T is the heat-bath temperature.

forces [vector<openmm.Vec3>] A vector whose length equals the number of particles in the
System. The i-th element contains the force on the i-th particle.

get_molecular_virial (forces)
Returns the molecular virial of a system.

To compute the molecular virial, only the center-of-mass coordinates of the molecules are considered to
scale in a box volume change, while the internal molecular structure keeps rigid. The molecular virial is
computed from the nonbonded part of the atomic virial by using the formulation of Ref. [1]:

Wiot = W — Z(I‘i —ri") - Fy,

where r; is the coordinate of atom i, F; is the resultant pairwise force acting on it, and r{™ is the center-
of-mass coordinate of the molecule to which it belongs.

forces [vector<openmm.Vec3>] A vector whose length equals the number of particles in the
System. The i-th element contains the force on the i-th particle.

4.2 forces

class atomsmm.forces.NonbondedExceptionsForce
Bases: atomsmm. forces._AtomsMM_CustomBondForce

A special class designed to compute only the exceptions of an OpenMM NonbondedForce object.

class atomsmm.forces.DampedSmoothedForce (alpha, cutoff distance, switch_distance, de-
gree=1)
Bases: atomsmm. forces._AtomsMM_CustomNonbondedForce

8 Chapter 4. Python API



AtomsMM, Release 0.1.0

A damped-smoothed version of the Lennard-Jones/Coulomb potential.

vy {u[(2)" - (2)] + 22 0)

01+ o02
2
€ = /€169
S(r)y=[14+0(r— rswitch)u3(l5u —6u® — 10)]
_ T = Tlyiteh
T — T¢witch

Warning: Long-range dispersion correction is not employed.

In the equations above, 6(z) is the Heaviside step function. Note that the switching function employed here,
with u being a quadratic function of r, is slightly different from the one normally used in OpenMM, in which u
is a linear function of r.

Parameters

* alpha (Number or unit.Quantity) — The Coulomb damping parameter (in inverse distance
unit).

* cutoff_distance (Number or unit. Quantity) — The distance at which the nonbonded interac-
tion vanishes.

 switch_distance (Number or unit. Quantity) — The distance at which the switching function
begins to smooth the approach of the nonbonded interaction towards zero.

* degree (int, optional, default=1) — The degree n in the definition of the switching variable
u (see above).

class atomsmm.forces.NearNonbondedForce (cutoff _distance, switch_distance, adjust-

ment=None, subtract=False, actual_cutoff=None)
Bases: atomsmm. forces._AtomsMM_CustomNonbondedForce, atomsmm. forces.NearForce

This is a smoothed version of the Lennard-Jones + Coulomb potential

VLJC(T):%{(U)”_(U)ﬁh L a

T T Admeg T

The smoothing is accomplished by application of a 5th-order spline function S(u(r)), which varies softly from
1 down to 0 along the range rywitcn < 7 < 7Tcyt. Such function is

S(u) =1+ u?(15u — 6u? — 10),
where

0 7 < Tswitch
" — T'switch
U(T) = Tswitch <7 < Teut -
Tcut — Tswitch
1 T > Teut

Such type of smoothing is essential for application in multiple time-scale integration using the RESPA-2 scheme
described in Refs. [2], [3], and [4].

Three distinc versions are available:

1. Applying the switch directly to the potential:

4.2. forces 9



AtomsMM, Release 0.1.0

Vr) = S(u(r)VLic(r).
2. Applying the switch to a shifted version of the potential:
V(r) = S(u(r)) Vise(r) = Visc(reu)]
3. Applying the switch to the force that results from the potential:
V(r) =Vise(r) = Vije(reu)
Viselr) = { e futu) (2) = fatutry (9] + Lyl e

T 4eg T

where f,,(u) is the solution of the 1st order differential equation

wtbdf,
o =5
fa(0)=1

h— Tswitch

Tcut — Tswitch

As a consequence of this modification, V' (r) = S(u(r))V/;o(r).

Note: In all cases, the Lorentz-Berthelot mixing rule is applied for unlike-atom interactions.

Parameters
* cutoff_distance (unit. Quantity) — The distance at which the nonbonded interaction vanishes.

 switch_distance (unit. Quantity) — The distance at which the switching function begins to
smooth the approach of the nonbonded interaction towards zero.

» adjustment (st5, optional, default=None) — A keyword for modifying the potential energy
function. Ifitis None, then the switching function is applied directly to the original potential.
Other options are ‘shift’ and ‘force-switch’. If it is ‘shift’, then the switching function is
applied to a potential that is already null at the cutoff due to a previous shift. If it is ‘force-
switch’, then the potential is modified so that the switching function is applied to the forces
rather than the potential energy.

* subtract (bool, optional, default=False) — Whether to substract (rather than add) the force.

o actual_cutoff (unit. Quantity, optional, default=None) — The cutoff that will actually be
used by OpenMM. This is often required for compatibility with other forces in the same
force group. If it is None, then the passed cutoff_distance (see above) will be used.

class atomsmm.forces.NearExceptionForce (cutoff _distance, switch_distance, adjust-

ment=None, subtract=False)
Bases: atomsmm. forces._AtomsMM_CustomBondForce, atomsmm. forces.NearForce

class atomsmm.forces.FarNonbondedForce (preceding, cutoff _distance, switch_distance=None)
Bases: atomsmm. forces._AtomsMM_CompoundForce

The complement of NearNonbondedForce and NonbondedExceptionsForce classes in order to form a complete
OpenMM NonbondedForce.

Note: Except for the shifting, this model is the ‘far’ part of the RESPA2 scheme of Refs. [2] and [3], with the
switching function applied to the potential rather than to the force.

10 Chapter 4. Python API



AtomsMM, Release 0.1.0

Parameters

* preceding (NearNonbondedForce)— The NearNonbondedForce object with which this
Force is supposed to match.

o cutoff_distance (Number or unit.Quantity) — The distance at which the nonbonded interac-
tion vanishes.

» switch_distance (Number or unit.Quantity, optional, default=None) — The distance at
which the switching function begins to smooth the approach of the nonbonded interaction
towards zero. If this is None, then no switching will be done prior to the potential cutoff.

* nonbondedMethod (openmm.NonbondedForce.Method, optional, default=PME) — The
method to use for nonbonded interactions. Allowed values are NoCutoff, CutoffNonPe-
riodic, CutoffPeriodic, Ewald, PME, or LIPME.

* ewaldErrorTolerance (Number, optional, default=1E-5) — The error tolerance for Ewald

summation.

class atomsmm.forces.SoftcoreLennardJonesForce (cutoff_distance=None,
use_switching_function=None,
switch_distance=None,
use_dispersion_correction=None,

parameter="lambda')
Bases: atomsmm. forces._ AtomsMM_CustomNonbondedForce

A softened version of the Lennard-Jones potential.

Parameters

 cutoff_distance (Number or unit. Quantity) — The distance at which the nonbonded interac-
tion vanishes.

 switch_distance (Number or unit.Quantity) — The distance at which the switching function
begins to smooth the approach of the nonbonded interaction towards zero.

class atomsmm.forces.SoftcoreForce (cutoff_distance, switch_distance=None)
Bases: atomsmm. forces._AtomsMM_CustomNonbondedForce

A softened version of the Lennard-Jones+Coulomb potential.
V(T) = Vidw (T) + Vcoul(r)

1 1
= 4 _— =
Vvdw (T) )\vdwe ( 82 s )

r\N6 1
= \— 71_)\vw
5 (0') +2( av)
70’14’0’2
2
€ = €1€2
01g2 1
Vu :)\ouif
co 1(7") c 1477'607“

4.2. forces 11



AtomsMM, Release 0.1.0

Parameters

* cutoff_distance (Number or unit. Quantity) — The distance at which the nonbonded interac-
tion vanishes.

* switch_distance (Number or unit. Quantity) — The distance at which the switching function
begins to smooth the approach of the nonbonded interaction towards zero.

4.3 integrators

class atomsmm.integrators.GlobalThermostatIntegrator (stepSize, nvelntegrator, ther-

] ) __ mostat=None) )
This class extends OpenMM’s CustomlIntegrator class in order to facilitate the construction of NVT integrators

which include a global thermostat, that is, one that acts equally and simultaneously on all degrees of freedom of
the system. In this case, a complete NVT step is split as:

. 15, . 15,
eét iLnvT — 6551‘, iLT eét iLNVE 6561‘, iLT

The propagator e’ *“NVE is a Hamiltonian
corresponds to a Hamiltonian ¢ Lr
Parameters
* stepSize (unit. Quantity) — The step size with which to integrate the system (in time unit).
* nvelntegrator (HamiltonianPropagator)— The Hamiltonian propagator.

* thermostat (ThermostatPropagator, optional, default=None) — The thermostat prop-
agator.

» randomSeed (int, optional, default=None) — A seed for random numbers.

class atomsmm.integrators.MultipleTimeScalelIntegrator (stepSize, loops, move=None,

boost=None, bath=None,
**kwargs)
This class implements a Multiple Time-Scale (MTS) integrator using the RESPA method.

Parameters

* stepSize (unit.Quantity) — The largest time step for numerically integrating the system of
equations.

* loops (list(int)) — A list of N integers. Assuming that force group 0 is composed of the
fastest forces, while group N-1 is composed of the slowest ones, loops[k] determines how
many steps involving forces of group k are internally executed for every step involving those
of group k+1.

* move (Propagator, optional, default = None) — A move propagator.

* boost (Propagator, optional, default = None) — A boost propagator.

* bath (Propagator, optional, default = None) — A bath propagator.
Keyword Arguments

* scheme (str, optional, default = middle) — The splitting scheme used to solve the equations
of motion. Available options are middle, xi-respa, xo-respa, side, and blitz. If it is mid-
dle (default), then the bath propagator will be inserted between half-step coordinate moves
during the fastest-force loops. If it is xi-respa, xo-respa, or side, then the bath propagator
will be integrated in both extremities of each loop concerning one of the N time scales, with

12

Chapter 4. Python API


http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.CustomIntegrator.html

AtomsMM, Release 0.1.0

xi-respa referring to the time scale of fastest forces (force group 0), xo-respa referring to
the time scale of the slowest forces (force group N-1), and side requiring the user to select
the time scale in which to locate the bath propagator via keyword argument location (see
below). If it is blitz, then the force-related propagators will be fully integrated at the outset
of each loop in all time scales and the bath propagator will be integrated between half-step
coordinate moves during the fastest-force loops.

* location (int, optional, default = None) — The index of the force group
(from O to N-1) that defines the time scale in which the bath propagator will be located. This
is only meaningful if keyword scheme is set to side (see above).

* nsy (int, optional, default = 1) — The number of Suzuki-Yoshida terms to
factorize the bath propagator. Valid options are 1, 3, 7, and 15.

* nres (int, optional, default = 1)- The number of RESPA-like subdivisions
to factorize the bath propagator.

Warning: The xo-respa and xi-respa schemes implemented here are slightly different from the ones de-
scribed in the paper by Leimkuhler, Margul, and Tuckerman [4].

class atomsmm.integrators.NHL_R_Integrator (stepSize, loops, temperature, timeScale, fric-

tionConstant, **kwargs)
This class is an implementation of the massive Nosé-Hoover-Langevin (RESPA) integrator. The method consists

in solving the following equations for each degree of freedom (DOF) in the system:

dr

E =

dv f

at om

dog = KT s [P
Q2 Q2

The equations are integrated by a reversible, multiple timescale numerical scheme.
Parameters

* stepSize (unit.Quantity) — The largest time step for numerically integrating the system of
equations.

* loops (list(int)) — See description in MultipleTimeScaleIntegrator.

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* timeScale (unit. Quantity) — A time scale 7 from which the inertial parameters are computed
as QQ = KTt 2.

* frictionConstant (unit. Quantity) — The friction constant ~y present in the stochastic equation
of motion for per-DOF thermostat variable vs.

o **kwargs (keyword arguments) — The same keyword arguments of class
MultipleTimeScaleIntegrator apply here.
initialize()
Perform initialization of atomic velocities and other random per-dof variables.

class atomsmm.integrators.Langevin_R_Integrator (stepSize, loops, temperature, friction-

Constant, **kwargs)
This class is an implementation of the multiple time scale Langevin (RESPA) integrator. The method consists

4.3. integrators 13



AtomsMM, Release 0.1.0

in solving the following equations for each degree of freedom (DOF) in the system:

dz
dt

@:i—'yvdt—i—\/MdW
dt  m m

The equations are integrated by a reversible, multiple timescale numerical scheme.

=

Parameters

* stepSize (unit. Quantity) — The largest time step for numerically integrating the system of
equations.

* loops (list(int)) — See description in MultipleTimeScalelntegrator.

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* frictionConstant (unit. Quantity) — The friction constant -y present in the stochastic equation
of motion for per-DOF thermostat variable vs.

» **kwargs (keyword arguments) — The same keyword arguments of class
MultipleTimeScalelntegrator apply here.

class atomsmm.integrators.SIN_R_Integrator (stepSize, loops, temperature, timeScale, fric-

tionConstant, **kwargs)
This class is an implementation of the Stochastic-Iso-NH-RESPA or SIN(R) method of Leimkuhler, Margul,

and Tuckerman [4]. The method consists in solving the following equations for each degree of freedom (DOF)
in the system:

dr
E—’U
dv  f
Pt
d’Ul
dt

v

= —)\Ul — V2U1

where:
~ fu—5Qivan}
mov? + %le% '

A consequence of these equations is that
2 1 2
mu” + §Q1v1 = kT.

The equations are integrated by a reversible, multiple timescale numerical scheme.
Parameters

* stepSize (unit. Quantity) — The largest time step for numerically integrating the system of
equations.

* loops (list(int)) — See description in MultipleTimeScaleIntegrator.

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

14 Chapter 4. Python API



AtomsMM, Release 0.1.0

* timeScale (unit. Quantity) — A time scale 7 from which the inertial parameters are computed
as Ql = QQ = k‘TT2.

* frictionConstant (unit. Quantity) — The friction constant y present in the stochastic equation
of motion for per-DOF thermostat variable vs.

o **kwargs (keyword arguments) — The same keyword arguments of class
MultipleTimeScalelIntegrator apply here.
initialize()
Perform initialization of atomic velocities and other random per-dof variables.

class atomsmm.integrators.NewMethodIntegrator (stepSize, loops, temperature, timeScale,

frictionConstant, **kwargs)
This class is an implementation of the Stochastic-Iso-NH-RESPA or SIN(R) method of Leimkuhler, Margul,

and Tuckerman [4]. The method consists in solving the following equations for each degree of freedom (DOF)
in the system:

dx
dt
dv
dt
d’Ul
dt

— v

Sl ©

= —)\Ul — V2U1

29kT
Q2

- le% — kT

dv
? Q-

dt — yvodt + dw

where:
o —3Qivgvf
muv? + %le% ’

A consequence of these equations is that
2 1 2
mu* + invl =kT.

The equations are integrated by a reversible, multiple timescale numerical scheme.
Parameters

* stepSize (unit.Quantity) — The largest time step for numerically integrating the system of
equations.

* loops (list(int)) — See description in MultipleTimeScalelntegrator.

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* timeScale (unit.Quantity) — A time scale 7 from which the inertial parameters are computed
as Ql = QQ = k‘TTQ.

* frictionConstant (unit. Quantity) — The friction constant -y present in the stochastic equation
of motion for per-DOF thermostat variable vs.

o **kwargs (keyword arguments) — The same keyword arguments of class
MultipleTimeScalelIntegrator apply here.
initialize()
Perform initialization of atomic velocities and other random per-dof variables.

class atomsmm.integrators.LimitedSpeedBAOABIntegrator (stepSize, loops, temperature,
frictionConstant, **kwargs)

4.3. integrators 15



AtomsMM, Release 0.1.0

Parameters

* stepSize (unit.Quantity) — The largest time step for numerically integrating the system of
equations.

* loops (list(int)) — See description in MultipleTimeScaleIntegrator.

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* frictionConstant (unit. Quantity) — The friction constant -y present in the stochastic equation
of motion for per-DOF thermostat variable vs.

o **kwargs (keyword arguments) — The same keyword arguments of class
MultipleTimeScaleIntegrator apply here.

initialize()
Perform initialization of atomic velocities and other random per-dof variables.

class atomsmm.integrators.LimitedSpeedNHLIntegrator (stepSize, loops, temperature,
timeScale, frictionConstant,
**kwargs)

Parameters

* stepSize (unit.Quantity) — The largest time step for numerically integrating the system of
equations.

* loops (list(int)) — See description in MultipleTimeScaleIntegrator.

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* frictionConstant (unit. Quantity) — The friction constant -y present in the stochastic equation
of motion for per-DOF thermostat variable vs.

o **kwargs (keyword arguments) — The same keyword arguments of class
MultipleTimeScaleIntegrator apply here.

initialize()
Perform initialization of atomic velocities and other random per-dof variables.

class atomsmm.integrators.LimitedSpeedStochasticIntegrator (stepSize, loops, tem-
perature,  timeScale,
frictionConstant,
**kwargs)

Parameters

* stepSize (unit. Quantity) — The largest time step for numerically integrating the system of
equations.

* loops (list(int)) — See description in MultipleTimeScalelntegrator.

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* frictionConstant (unit. Quantity) — The friction constant -y present in the stochastic equation
of motion for per-DOF thermostat variable vs.

» **kwargs (keyword arguments) — The same keyword arguments of class
MultipleTimeScalelIntegrator apply here.
initialize ()
Perform initialization of atomic velocities and other random per-dof variables.

16 Chapter 4. Python API



AtomsMM, Release 0.1.0

class atomsmm

.integrators.LimitedSpeedStochasticVelocityIntegrator (stepSize,
loops,
temper-
ature,
timeScale,
friction-
Constant,
**kwargs)

Parameters

stepSize (unit.Quantity) — The largest time step for numerically integrating the system of
equations.

loops (list(int)) — See description in MultipleTimeScaleIntegrator.

temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

frictionConstant (unit. Quantity) — The friction constant -y present in the stochastic equation
of motion for per-DOF thermostat variable vs.

**kwargs (keyword arguments) — The same keyword arguments of class
MultipleTimeScalelIntegrator apply here.

initialize()
Perform initialization of atomic velocities and other random per-dof variables.

class atomsmm

.integrators.ExtendedSystemVariable (name, mass, kT, time_scale,

lower_limit=0, up-
per_limit=1, periodic=False,
thermostat="Nose-Hoover', fric-

tion_constant=Quantity(value=0.1,
unit=/femtosecond))

An extended-system variable used for Adiabatic Free Energy Dynamics (AFED).

Parameters

class atomsmm

name (str) — The name of the extended-space variable.
mass (Number or unit.Quantity) — The mass of the extended-space variable.
KT (Number of unit.Quantity) — The temperature of the extended-space variable.

time_scale (Number of unit.Quantity) — The time scale of the thermostat that controls the
temperature of this variable.

lower_limit (Number, optional, default=0) — The lower limit of the variable.
upper_limit (Number, optional, default=1) — The upper limit of the variable.

periodic (Bool, optional, default=False) — Whether this variable is subject to periodic
boundary conditions. If this is False, then hard, ellastic walls will be considered instead.

.integrators.AdiabaticDynamicsIntegrator (custom_integrator, nsteps,
variables)

This class implements the Adiabatic Free Energy Dynamics (AFED) method.

The equations of motion go as follows:

t t
e2Nnsteps0tL :[B%MFAVPA eétﬁatomseédﬁxvpk]nnsmps %

t -1 t —
Nusteps SEPA M ' Vo e2nmsteps St Latn NnstepsOtPA My 'V x

€ €

[e20F5Vey tLatoms o3 O1FL Vi |nsteps

4.3. integrators

17



AtomsMM, Release 0.1.0

Parameters

* custom_integrator (openmm.CustomIntegrator) — A CustomlIntegrator employed to solve
the equations of motion of the physical particles, that is, to enact the propagator e?*“atoms
The size of an overall AFED time step will be given by At = 2ny4epsdt, where dt is the
time step size previously specified for the custom_integrator.

* nsteps (int) — The number of consecutive custom_integrator steps executed in the begining
of an overall AFED step, and then again in the end.

e variables (list(ExtendedSystemVariable)) — A list of extended-system variables
whose adiabatic dynamics must be taken into account.

initialize()
Perform initialization of atomic velocities and other random per-dof variables.

4.4 propagators

class atomsmm.propagators.Propagator
Bases: object

This is the base class for propagators, which are building blocks for constructing CustomIntegrator objects in
OpenMM. Shortly, a propagator translates the effect of an exponential operator like ¢ ?“. This effect can
be either the exact solution of a system of deterministic or stochastic differential equations or an approximate
solution obtained by a splitting scheme such as, for instance, ¢% (iLA+iLs)  gdtilagdtilp

integrator (stepSize)
This method generates an Integrator object which implements the effect of the propagator.

Parameters stepSize (unit. Quantity) — The step size for integrating the equations of motion.
Returns Integrator

class atomsmm.propagators.ChainedPropagator (propagators)
Bases: atomsmm.propagators.Propagator

This class combines a list of propagators A1 = % Fa1 and B = €%*L5 by making C' = AB, that is,

eétch _ eEtzLAeétzLB'

Warning: Propagators are applied to the system in the right-to-left direction. In general, the effect of
the chained propagator is non-commutative. Thus, ChainedPropagator(A, B) results in a time-asymmetric
propagator unless A and B commute.

Note: It is possible to create nested chained propagators. If, for instance, B is a chained propagator given
by B = DE, then an object instantiated by ChainedPropagator(A, B) will be a propagator corresponding to
C =ADE.

Parameters
* A (Propagator)— The secondly applied propagator in the chain.

* B (Propagator) - The firstly applied propagator in the chain.

18 Chapter 4. Python API


http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.CustomIntegrator.html
http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.CustomIntegrator.html

AtomsMM, Release 0.1.0

class atomsmm.propagators.SplitPropagator (A, n)
Bases: atomsmm.propagators.Propagator

. . Stil a - St i1, .
This class splits a propagators A = €°* "4 into a sequence of n propagators ¢ = e~ “~4, that is,
. . n
e5tZLA _ (e%’LLA) .

Parameters
* A (Propagator)— The propagator to be split.
* n (int) — The number of parts.

class atomsmm.propagators.TrotterSuzukiPropagator (A, B)
Bases: atomsmm.propagators.Propagator

This class combines two propagators A = ¢t *L4 and B = L5 by using the time-symmetric Trotter-Suzuki
splitting scheme [5] C' = B'/2AB'/2 that is,

eétiLo _ 61/25tiL365tiLA61/26tiL3‘

Note: It is possible to create nested Trotter-Suzuki propagators. If, for instance, B is a Trotter-Suzuki propaga-
tor given by B = E'/2DFE'/2 then an object instantiated by TrotterSuzukiPropagator(A, B) will be a propagator
corresponding to C' = EYV4DY2EYVAAEYADY2EY/4,

Parameters
* A (Propagator)— The middle propagator of a Trotter-Suzuki splitting scheme.
* B (Propagator) — The side propagator of a Trotter-Suzuki splitting scheme.
class atomsmm.propagators.SuzukiYoshidaPropagator (A, nsy=3)
Bases: atomsmm. propagators.Propagator

This class splits a propagator A = e%**L4 by using a high-order, time-symmetric Suzuki-Yoshida scheme
[6][71[8] given by

Nsy

eétiLA — He’wi(stiLA’

i=1
where n, is the number of employed Suzuki-Yoshida weights.
Parameters

* A (Propagator) — The propagator to be splitted by the high-order Suzuki-Yoshida
scheme.

* nsy (int, optional, default=3) — The number of Suzuki-Yoshida weights to be employed.
This must be 3, 7, or 15.

class atomsmm.propagators.TranslationPropagator (constrained=True)
Bases: atomsmm.propagators.Propagator

. . . . T —1
This class implements a coordinate translation propagator e M~ Vx

Parameters constrained (bool, optional, default=True) — If True, distance constraints are taken into
account.

4.4. propagators 19



AtomsMM, Release 0.1.0

class atomsmm.propagators.VelocityBoostPropagator (constrained=True)
Bases: atomsmm.propagators.Propagator

. . . T
This class implements a velocity boost propagator e20F Vo,

Parameters constrained (bool, optional, default=True) —If True, distance constraints are taken into
account.

class atomsmm.propagators.MassiveIsokineticPropagator (temperature, timeScale, L,
forceDependent)
Bases: atomsmm.propagators.Propagator

This class implements an unconstrained, massive isokinetic propagator. It provides, for every degree of freedom
in the system, a solution for one of ODE systems below.

1. Force-dependent equations:

dv

@ Y

d’U1

— ==

dt FU1
Fo

= 2. 1 2
mv? + 5Q1v7

where F'is a constant force. The exact solution for these equations is:

v=H7

v = HULO

where:
Ft kT Ft

ﬁ:vocosh< >+\/Sinh< >
mkT m mkT
T

H = - kl

2. Force-indepependent equations:

dv

— ==

dt N

dv

7; = —()\N + 1}2)1}1

\ —3Q1v0]
N

where v is a constant thermostat ‘velocity’. In this case, the exact solution is:

v = HUO
v = H’ﬁl
where:

’lA)l = V1,0 exp(fvgt)
kT

H= 2 1) 52

mug + 5Q107

Both ODE systems above satisfy the massive isokinetic constraint muv? + %le% =kT.

Parameters

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

20 Chapter 4. Python API



AtomsMM, Release 0.1.0

* timeScale (unit. Quantity) — A time scale 7 from which to compute the inertial parameter
Ql =kIT 2.

* forceDependent (bool) — If True, the propagator will solve System 1. If False, then System
2 will be solved.

class atomsmm.propagators.NewMethodPropagator (temperature, timeScale, L, forceDepen-

dent)
Bases: atomsmm. propagators.Propagator

Parameters

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* timeScale (unit. Quantity) — A time scale 7 from which to compute the inertial parameter
Ql = KTt 2.

* L (int) — The parameter L.

* forceDependent (bool) — If True, the propagator will solve System 1. If False, then System
2 will be solved.

class atomsmm.propagators.RestrainedLangevinPropagator (temperature,  frictionCon-

stant, L, kind)
Bases: atomsmm.propagators.Propagator

Parameters

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* timeScale (unit. Quantity) — A time scale 7 from which to compute the inertial parameter
Q 1= kKTt 2.

* L (int) — The parameter L.

* forceDependent (bool) — If True, the propagator will solve System 1. If False, then System
2 will be solved.

class atomsmm.propagators.LimitedSpeedLangevinPropagator (temperature, frictionCon-

stant, L, kind)
Bases: atomsmm.propagators.Propagator

Parameters

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* timeScale (unit. Quantity) — A time scale 7 from which to compute the inertial parameter
Ql =kTT 2.

* L (int) — The parameter L.
* kind (str) — Options are move, boost, and bath.

class atomsmm.propagators.LimitedSpeedNHLPropagator (temperature, timeScale, friction-

Constant, L, kind)
Bases: atomsmm.propagators.Propagator

Parameters

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

4.4. propagators 21



AtomsMM, Release 0.1.0

* timeScale (unit. Quantity) — A time scale 7 from which to compute the inertial parameter
Ql =kIT 2.

* L (int) — The parameter L.
* kind (str) — Options are move, boost, and bath.

class atomsmm.propagators.LimitedSpeedStochasticPropagator (femperature,

timeScale, fric-
tionConstant, L,
kind)

Bases: atomsmm.propagators.Propagator
Parameters

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* timeScale (unit. Quantity) — A time scale 7 from which to compute the inertial parameter
Ql =kTT 2.
* L (int) — The parameter L.

* kind (str) — Options are move, boost, and bath.

class atomsmm.propagators.LimitedSpeedStochasticVelocityPropagator (femperature,
timeScale,
friction-
Constant,

L, kind)
Bases: atomsmm.propagators.Propagator

Parameters

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* timeScale (unit. Quantity) — A time scale 7 from which to compute the inertial parameter
Ql =KkKTT 2.

* L (int) — The parameter L.
* kind (str) — Options are move, boost, and bath.

class atomsmm.propagators.OrnsteinUhlenbeckPropagator (femperature, frictionCon-
stant, velocity="v', mass='m’,
force=None, overall=False,

**globals)
Bases: atomsmm. propagators.Propagator

This class implements an unconstrained, Ornstein-Uhlenbeck (OU) propagator, which provides a solution for
the following stochastic differential equation for every degree of freedom in the system:

F [2vkT
dV = Mdt - ’}/th + TdW

In this equation, V, M, and F are generic forms of velocity, mass, and force. By default, the propagator acts on
the atomic velocities (v) and masses (m), while the forces are considered as null.

Parameters

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

22 Chapter 4. Python API



AtomsMM, Release 0.1.0

* frictionConstant (unit. Quantity, optional, default=None) — The friction constant y present
in the stochastic equation.

* velocity (str, optional, default="v’) — The name of a per-dof variable considered as the
velocity of each degree of freedom.

* mass (str; optional, default="m’) — The name of a per-dof or global variable considered as
the mass associated to each degree of freedom.

* force (str, optional, default=None) — The name of a per-dof variable considered as the force
acting on each degree of freedom. If it is None, then this force is considered as null.

class atomsmm.propagators.GenericBoostPropagator (velocity="', mass='m', force='f,

perDof=True, **globals)
Bases: atomsmm. propagators.Propagator

This class implements a linear boost by providing a solution for the following ODE for every degree of freedom
in the system:
v _F
a M’
Parameters

* velocity (str, optional, default="v’) — The name of a per-dof variable considered as the
velocity of each degree of freedom.

* mass (str; optional, default="m’) — The name of a per-dof or global variable considered as
the mass associated to each degree of freedom.

* force (str, optional, default="f") — The name of a per-dof variable considered as the force
acting on each degree of freedom.

Keyword Arguments perDof (bool, default=True)- This mustbe True if the propagated
velocity is a per-dof variable or False if it is a global variable.

class atomsmm.propagators.GenericScalingPropagator (velocity, damping, perDof=True,
K3k
globals)

Bases: atomsmm.propagators.Propagator

This class implements scaling by providing a solution for the following ODE for every degree of freedom in the
system:

av
E = _>\damping * V.

Parameters

* velocity (str) — The name of a per-dof variable considered as the velocity of each degree of
freedom.

* damping (str) — The name of a per-dof or global variable considered as the damping param-
eter associated to each degree of freedom.

class atomsmm.propagators.RespaPropagator (loops, move=None, boost=None, core=None,

shell=None, **kwargs)
Bases: atomsmm.propagators.Propagator

This class implements a multiple timescale (MTS) rRESPA propagator [9] with N force groups, where group 0
goes in the innermost loop (shortest time step) and group N — 1 goes in the outermost loop (largest time step).
The complete Liouville-like operator corresponding to the equations of motion is split as

N-1 N-1
1L = Z‘Lmove + Z (iLboost,k) + Z.Lcore + Z (iLshell,k)
k=0 k=0

4.4. propagators 23



AtomsMM, Release 0.1.0

In this scheme, i Love s the only component that entails changes in the atomic coordinates, while 7Ly oost,k
is the only component that depends on the forces of group k. Therefore, operator iL... and each operator
1 Lghel,, are reserved to changes in atomic velocities due to the action of thermostats, as well as to changes in
the thermostat variables themselves.

The rRESPA split can be represented recursively as

6AtiL — eAtiLN— 1

where

St 5t 5t 5t 5t Nk
StiLy (emll/shell,keml[‘boost,keTkZLk—lemlllboosc,keml[‘shell,k) k Z 0
€ = .
e%iLmoveeétiLcore e%iLl’nove k = —1

Parameters

* loops (list(int)) — A list of N integers, where loops[k] determines how many iterations of
force group k are internally executed for every iteration of force group k+1.

* move (Propagator, optional, default=None) — A propagator used to update the coordi-
nate of every atom based on its current velocity. If it is None, then an unconstrained, linear
translation is applied.

* boost (Propagator, optional, default=None) — A propagator used to update the velocity
of every atom based on the resultant force acting on it. If it is None, then an unconstrained,
linear boosting is applied.

* core (Propagator, optional, default=None) — An internal propagator to be used for con-
trolling the configurational probability distribution sampled by the rRESPA scheme. This
propagator will be integrated in the innermost loop (shortest time step). If it is None (de-
fault), then no core propagator will be applied.

o shell (dict(int : Propagator), optional, default=None) — A dictionary of propagators to
be used for controlling the configurational probability distribution sampled by the rRESPA
scheme. Propagator shell[k] will be excecuted in both extremities of the loop involving
forces of group k. If it is None (default), then no shell propagators will be applied. Dictio-
nary keys must be integers from 0 to N-1 and omitted keys mean that no shell propagators
will be considered at those particular loop levels.

* has_memory (bool, optional, default=True) — If True, integration in the fastest time scale
remembers the lattest forces computed in all other time scales. To compensate, each remem-
bered force is substracted during the integration in its respective time scale. Warning: this
integration scheme is not time-reversal symmetric.

class atomsmm.propagators.MultipleTimeScalePropagator (loops, move=None,

boost=None, bath=None,

**kwargs)
Bases: atomsmm.propagators.RespaPropagator

This class implements a Multiple Time-Scale (MTS) propagator using the RESPA method.
Parameters

* loops (list(int)) — A list of N integers. Assuming that force group 0 is composed of the
fastest forces, while group N-1 is composed of the slowest ones, loops[k] determines how
many steps involving forces of group k are internally executed for every step involving those
of group k+1.

* move (Propagator, optional, default = None) — A move propagator.

* boost (Propagator, optional, default = None) — A boost propagator.

24

Chapter 4. Python API



AtomsMM, Release 0.1.0

» bath (Propagator, optional, default = None) — A bath propagator.
Keyword Arguments

* scheme (str, optional, default = middle) — The splitting scheme used to solve the equations
of motion. Available options are middle, xi-respa, xo-respa, side, and blitz. If it is mid-
dle (default), then the bath propagator will be inserted between half-step coordinate moves
during the fastest-force loops. If it is xi-respa, xo-respa, or side, then the bath propagator
will be integrated in both extremities of each loop concerning one of the N time scales, with
xi-respa referring to the time scale of fastest forces (force group 0), xo-respa referring to
the time scale of the slowest forces (force group N-1), and side requiring the user to select
the time scale in which to locate the bath propagator via keyword argument location (see
below). If it is blitz, then the force-related propagators will be fully integrated at the outset
of each loop in all time scales and the bath propagator will be integrated between half-step
coordinate moves during the fastest-force loops.

* location (int, optional, default = None) — The index of the force group
(from O to N-1) that defines the time scale in which the bath propagator will be located. This
is only meaningful if keyword scheme is set to side (see above).

* nsy (int, optional, default = 1) — The number of Suzuki-Yoshida terms to
factorize the bath propagator. Valid options are 1, 3, 7, and 15.

e nres (int, optional, default = 1)- The number of RESPA-like subdivisions
to factorize the bath propagator.

Warning: The xo-respa and xi-respa schemes implemented here are slightly different from the ones de-
scribed in the paper by Leimkuhler, Margul, and Tuckerman [4].

class atomsmm.propagators.SIN_R_Propagator (loops, temperature, timeScale, frictionCon-
stant, **kwargs)
Bases: atomsmm. propagators.MultipleTimeScalePropagator
This class is an implementation of the Stochastic-Iso-NH-RESPA or SIN(R) method of Leimkuhler, Margul,
and Tuckerman [4]. The method consists in solving the following equations for each degree of freedom (DOF)
in the system:

dr
E—U
dv _ f
i
d’Ul
dt

Av
= —)\111 — V2U1

2vkT
Q2

o le% — kJT

dv
? Q-

dt — yvodt + dw

where:

- Ju— %wa%

A consequence of these equations is that
2 1 2
mu” + §Q1v1 = kT.

The equations are integrated by a reversible, multiple timescale numerical scheme.

4.4. propagators 25



AtomsMM, Release 0.1.0

Parameters
* loops (list(int)) — See description in MultipleTimeScaleIntegrator.

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* timeScale (unit. Quantity) — A time scale 7 from which the inertial parameters are computed
as Ql = QQ = k‘TT2.

* frictionConstant (unit. Quantity) — The friction constant -y present in the stochastic equation
of motion for per-DOF thermostat variable vs.

o **kwargs (keyword arguments) — The same keyword arguments of class
MultipleTimeScalePropagator apply here.

class atomsmm.propagators.VelocityVerletPropagator
Bases: atomsmm.propagators.Propagator

This class implements a Velocity Verlet propagator with constraints.

- T T -1 T
eItiLNve _ o 3OtF! Vp 5tp" M™ 1V, ,56tF " Vp

Note: In the original OpenMM VerletIntegrator class, the implemented propagator is a leap-frog version of the
Verlet method.

class atomsmm.propagators.UnconstrainedVelocityVerletPropagator
Bases: atomsmm. propagators.Propagator

This class implements a Velocity Verlet propagator with constraints.

; T T -1 T
eItilnve _ o 30tF T Vp 0tp" M~V 3 5tF " Vg

Note: In the original OpenMM VerletIntegrator class, the implemented propagator is a leap-frog version of the
Verlet method.

class atomsmm.propagators.VelocityRescalingPropagator (temperature, degreesOfFree-

dom, timeScale)
Bases: atomsmm. propagators.Propagator

This class implements the Stochastic Velocity Rescaling propagator of Bussi, Donadio, and Parrinello [10],
which is a global version of the Langevin thermostat [11].

This propagator provides a solution for the following SDE [11]:

1 [(Nf — kT kpT
= = S OEBT ] pat 4y B
=5 2K } pdt 1\ 5PV

The gamma-distributed random numbers required for the solution are generated by using the algorithm of
Marsaglia and Tsang [12].

Warning: An integrator that uses this propagator will fail if no initial velocities are provided to the system
particles.

Parameters

26 Chapter 4. Python API


http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.VerletIntegrator.html
http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.VerletIntegrator.html

AtomsMM, Release 0.1.0

* temperature (unit. Quantity) — The temperature of the heat bath.

* degreesOfFreedom (inf) — The number of degrees of freedom in the system, which can be
retrieved via function countDegreesOfFreedom ().

* timeScale (unit. Quantity) — The relaxation time of the thermostat.

class atomsmm.propagators.NoseHooverPropagator (temperature, degreesOfFreedom,

timeScale, nloops=1)
Bases: atomsmm.propagators.Propagator

This class implements a Nose-Hoover propagator.
As usual, the inertial parameter () is defined as QQ = Ntk pT'T2, with T being a relaxation time [9].
Parameters
* temperature (unit. Quantity) — The temperature of the heat bath.

* degreesOfFreedom (int) — The number of degrees of freedom in the system, which can be
retrieved via function countDegreesOfFreedom ().

* timeScale (unit. Quantity (time)) — The relaxation time of the Nose-Hoover thermostat.
* nloops (int, optional, default=1) — Number of RESPA-like subdivisions.

class atomsmm.propagators.MassiveNoseHooverPropagator (temperature, timeScale,
nloops=1)
Bases: atomsmm.propagators.Propagator

This class implements a massive Nose-Hoover propagator.
As usual, the inertial parameter () is defined as Q = Nk pT'T2, with T being a relaxation time [9].
Parameters
* temperature (unit. Quantity) — The temperature of the heat bath.
* timeScale (unit. Quantity (time)) — The relaxation time of the Nose-Hoover thermostat.
* nloops (int, optional, default=1) — Number of RESPA-like subdivisions.

class atomsmm.propagators.MassiveGeneralizedGaussianMomentPropagator (femperature,
timeScale,

nloops=1)
Bases: atomsmm. propagators.Propagator

This class implements a massive Generalized Gaussian Moment propagator.
As usual, the inertial parameter () is defined as QQ = Nsk gT72, with 7 being a relaxation time [9].
Parameters
 temperature (unit. Quantity) — The temperature of the heat bath.
* timeScale (unit. Quantity (time)) — The relaxation time of the Nose-Hoover thermostat.
* nloops (int, optional, default=1) — Number of RESPA-like subdivisions.

class atomsmm.propagators.NoseHooverChainPropagator (femperature, degreesOfFree-
dom, timeScale, frictionCon-

stant=None)
Bases: atomsmm.propagators.Propagator

This class implements a Nose-Hoover chain [9] with two global thermostats.

4.4. propagators 27



AtomsMM, Release 0.1.0

This propagator provides a solution for the following ODE system:

LLP _ _DPnn
dt Q1
dppa Thg—1 Pn,2
——= =p M — NikgT — ==
dt P P fkB Os Pna
dpy,2 P?, 1
= = —= — kT
a @ P
As usual, the inertial parameter () is defined as @ = NskpT 72, with 7 being a relaxation time [9]. An

approximate solution is obtained by applying the Trotter-Suzuki splitting formula:

6(5t/2)£32 e(5t/2)£31 e(dt/2)[131 6(5t)£s 6(5t/2)£31 6(6t/2)LSI 6(5t/2)£32
Each exponential operator above is the solution of a differential equation.
Equation ‘B2’ is a boost of thermostat 2, whose solution is:

2
_ 0 Dy
pn,Z(t) - p7772 + (Ql - kBT> t

Equation ‘S1’ is a scaling of thermostat 1, whose solution is:

Pn,2

—Pn.2y
pya(t) = P?],le 2
Equation ‘B1’ is a boost of thermostat 1, whose solution is:
pni(t) =py, + (P"M 'p— NskpT) t

Equation ‘S’ is a scaling of particle momenta, whose solution is:

Pn,1

p(t) = poei Q1

Parameters
* temperature (unit. Quantity) — The temperature of the heat bath.

* degreesOfFreedom (inf) — The number of degrees of freedom in the system, which can be
retrieved via function countDegreesOfFreedom ().

* timeScale (unit. Quantity (time)) — The relaxation time of the Nose-Hoover thermostat.

* frictionConstant (unit. Quantity (1/time)) — The friction coefficient of the Langevin thermo-
stat.

class atomsmm.propagators.NoseHooverLangevinPropagator (temperature, degreesOfFree-
dom, timeScale, frictionCon-

stant=None)
Bases: atomsmm.propagators.Propagator

This class implements a Nose-Hoover-Langevin propagator [13][14], which is similar to a Nose-Hoover chain
[9] of two thermostats, but with the second one being a stochastic (Langevin-type) rather than a deterministic
thermostat.

This propagator provides a solution for the following SDE system:

dp = —%pdt
(S)

dp, = (pP"M™'p — N;kpT)dt — yp,dt + /2vQkpTdW
(0)

28 Chapter 4. Python API



AtomsMM, Release 0.1.0

As usual, the inertial parameter () is defined as Q = N kaTT2, with 7 being a relaxation time [9]. An
approximate solution is obtained by applying the Trotter-Suzuki splitting formula:

o(6t/2)Lp (8t/2)Ls tLo ,(5t/2)Ls ,(5¢/2)Lp

Each exponential operator above is the solution of a differential equation.

Equation ‘B’ is a boost, whose solution is:
pn(t) = Dng + (pTMflp — kaBT)t

Equation ‘S’ is a scaling, whose solution is:

Pn t

p(t) = poe” @

Equation ‘O’ is an Ornstein—Uhlenbeck process, whose solution is:

kpT

0 (1 — 6_27t)RN

Pn(t) = pyoe " +

where Ry is a normally distributed random number.
Parameters
 temperature (unit. Quantity) — The temperature of the heat bath.

¢ degreesOfFreedom (int) — The number of degrees of freedom in the system, which can be
retrieved via function countDegreesOfFreedom ().

* timeScale (unit. Quantity (time)) — The relaxation time of the Nose-Hoover thermostat.

* frictionConstant (unit. Quantity (1/time)) — The friction coefficient of the Langevin thermo-
stat.

class atomsmm.propagators.RegulatedTranslationPropagator (femperature, n, al-
pha_n=1)
Bases: atomsmm.propagators.Propagator

An unconstrained, regulated translation propagator which provides, for every degree of freedom in the system,
a solution for the following ODE:

dr; .
Wi _ o tanh [ 2P
dt m;c;

where ¢; = 7‘3‘"’72’?’371

is the speed limit for such degree of freedom and, by default, o, = "TH The exact
solution for this equation is:

T (t) = 7’? + citanh <Oénp> t

mc;
where 7 is the initial coordinate.
Parameters

* temperature (unit.Quantity) — The temperature to which the configurational sampling
should correspond.

* n (int or float) — The regulating parameter.

Keyword Arguments alpha_n (int or float, default=1)- Another regulating param-
eter.

4.4. propagators 29



AtomsMM, Release 0.1.0

class atomsmm.propagators.RegulatedBoostPropagator
Bases: atomsmm.propagators.Propagator

An unconstrained, regulated boost propagator which provides, for every degree of freedom in the system, a
solution for the following ODE:

dpi

dt

where F; is a constant force. The exact solution for this equation is:

where p!? is the initial momentum.

class atomsmm.propagators.RegulatedMassiveNoseHooverLangevinPropagator (femperature,
n,
timeScale,
fric-
tion-
Con-
stant,
al-
pha_n=1,
split=False,
adi-
a-
batic=False)

Bases: atomsmm. propagators.Propagator

This class implements a regulated version of the massive Nose-Hoover-Langevin propagator [13][14]. It pro-
vides, for every degree of freedom in the system, a solution for the following SDE system:

dp; = —vy, pidt

Uy — kT [2~vkgT
dvy,, = vaBdt—fyvmdt—i— 7QB dW;,

D
v; = ¢; tanh <7'pl) .

m;c;

where:

Here, ¢; = 4/ % is the speed limit for such degree of freedom and, by default, o, = ”T“ As usual, the

inertial parameter Q is defined as Q = kpT'72, with T being a relaxation time [9]. An approximate solution is
obtained by applying the Trotter-Suzuki splitting formula:

L — (3t/2)Lp L(5t/2)Ls (5tLo L(58/2)Ls ,(5/2)Lp

Each exponential operator above is the solution of a differential equation.
Equation ‘B’ is a boost, whose solution is:

Ui — kpT
Vg, () = vy, + pTBt

Equation ‘S’ is a scaling, whose solution is:

pi(t) = ple v

30 Chapter 4. Python API



AtomsMM, Release 0.1.0

Equation ‘O’ is an Ornstein—Uhlenbeck process, whose solution is:

kT
vy, (t) = Uoief'yt + i(1 —e )Ry,

K Q
where Ry ; is a normally distributed random number.
Parameters
* temperature (unit. Quantity) — The temperature of the heat bath.
* n (int or float) — The regulating parameter.
* timeScale (unit. Quantity (time)) — The relaxation time of the Nose-Hoover thermostat.

* frictionConstant (unit. Quantity (1/time)) — The friction coefficient of the Langevin thermo-
stat.

Keyword Arguments alpha_n (int or float, default=1)- Another regulating param-
eter.

class atomsmm.propagators.TwiceRegulatedMassiveNoseHooverLangevinPropagator (temperature,
n,
timeScale,
fric-
tion-
Con-
stant,
al-
pha_n=1,
split=False,
adi-
a-

batic=False)
Bases: atomsmm.propagators.Propagator

This class implements a doubly-regulated version of the massive Nose-Hoover-Langevin propagator [13][14].
It provides, for every degree of freedom in the system, a solution for the following SDE system:

dp; = —vy,,mvdt

1 1 [2vykpT
dv,, = 3 (7;‘1;“ mv? — kBT> dt — vy, dt + 1| =L QB dw;,

v; = ¢; tanh <Oznp¢) .

m;c;

where:

Here, ¢; = Va,nm;kT is speed limit for such degree of freedom and, by default, o, = ”Zl. As usual, the
inertial parameter Q is defined as Q = kpT'72, with T being a relaxation time [9]. An approximate solution is
obtained by applying the Trotter-Suzuki splitting formula:

oL — o(0t/2)Lp ,(3t/2)Ls y6tLo ,(5t/2)Ls ,(5t/2) L

Each exponential operator above is the solution of a differential equation.

Equation ‘B’ is a boost, whose solution is:

1 1
vy, (t) = vgi + ) (T;—i_n m? — k:BT> t

4.4. propagators 31



AtomsMM, Release 0.1.0

Equation ‘S’ is a scaling, whose solution is:

pi(t) = m;cC; arcsinh [Sinh (a”p’) e—anvnit:|

(7% m;c;

Equation ‘O’ is an Ornstein—Uhlenbeck process, whose solution is:

0 g [kBT

i Q (1 - e_Q’Yt)RN

Un; (t) =v

where Ry is a normally distributed random number.
Parameters
 temperature (unit. Quantity) — The temperature of the heat bath.
* n (int or float) — The regulating parameter.
* timeScale (unit. Quantity (time)) — The relaxation time of the Nose-Hoover thermostat.

* frictionConstant (unit. Quantity (1/time)) — The friction coefficient of the Langevin thermo-
stat.

Keyword Arguments alpha_n (int or float, default=1)- Another regulating param-
eter.

class atomsmm.propagators.RegulatedAtomicNoseHooverLangevinPropagator (femperature,
n,
timeScale,
fric-
tion-
Con-
stant,
al-
pha_n=1,
split=False)

Bases: atomsmm. propagators.Propagator

This class implements a regulated version of the massive Nose-Hoover-Langevin propagator [13][14]. It pro-
vides, for every degree of freedom in the system, a solution for the following SDE system:
dpi = _'Umpidt

Q’YkBT
Q

_ pivi — kT

dvy, = 0 dt — yup, dt +

dWiv

where:

Y
v; = citanh< npl) .

m;c;

Here, ¢; = 4/ %M is the speed limit for such degree of freedom and, by default, o, = "Zl. As usual, the
inertial parameter Q is defined as Q = kgT'72, with 7 being a relaxation time [9]. An approximate solution is
obtained by applying the Trotter-Suzuki splitting formula:

L — (8t/2)Lp ,(86/2)Ls ,0tLo ,(68/2)Ls ,(6/2)Lp

Each exponential operator above is the solution of a differential equation.

32 Chapter 4. Python API



AtomsMM, Release 0.1.0

Equation ‘B’ is a boost, whose solution is:

i — kT
Um(t) :Ugi +pzvaBt

Equation ‘S’ is a scaling, whose solution is:

Uyt

pi(t) = ple”"n

Equation ‘O’ is an Ornstein—Uhlenbeck process, whose solution is:

kT
U, (8) = vy, + =B

i Q (1 - 6_2’yt)RN,i

where %y ; is a normally distributed random number.
Parameters
* temperature (unit. Quantity) — The temperature of the heat bath.
* n (int or float) — The regulating parameter.
* timeScale (unit. Quantity (time)) — The relaxation time of the Nose-Hoover thermostat.

* frictionConstant (unit. Quantity (1/time)) — The friction coefficient of the Langevin thermo-
stat.

Keyword Arguments alpha_n (int or float, default=1)- Another regulating param-
eter.

class atomsmm.propagators.TwiceRegulatedAtomicNoseHooverLangevinPropagator (temperature,
n,
timeScale,
fric-
tion-
Con-
stant,
al-
pha_n=1,
split=False)

Bases: atomsmm. propagators.Propagator

This class implements a doubly-regulated version of the atomic Nose-Hoover-Langevin propagator [13][14]. It
provides, for every atom in the system, a solution for the following SDE system:

2
dvi = —Up,atom; Vi [1 - (UZ> ‘| dt
¢

1 1
dvy, ; = 6 (T;—anjv;rvj — 3]€BT> dt — yvy, ;dt +

29kpT
’YQB dw;,

where ¢; = Vay,nm;kT is speed limit for such degree of freedom and, by default, av,, = "T'H As usual, the
inertial parameter ( is defined as Q = 3kpT'72, with 7 being a relaxation time [9]. An approximate solution is
obtained by applying the Trotter-Suzuki splitting formula:

eétﬁ — e(&t/?)LB e(ét/2)£s eétﬁoe(§t/2)ﬁse(5t/2)£3

Each exponential operator above is the solution of a differential equation.

4.4. propagators 33



AtomsMM, Release 0.1.0

Equation ‘B’ is a boost, whose solution is:

1 /n+1
vy,j(t) = U?,,j + 0 <a - mjv;frvj — SkBT> t

Equation ‘S’ is a scaling, whose solution is:

’US,Z'(t)

o~ 2 2
() ()

Equation ‘O’ is an Ornstein—Uhlenbeck process, whose solution is:

kT
vy, (t) = v e 7 + UEA

n (1—e )Ry

where Ry is a normally distributed random number.
Parameters
* temperature (unit. Quantity) — The temperature of the heat bath.
* n (int or float) — The regulating parameter.
* timeScale (unit. Quantity (time)) — The relaxation time of the Nose-Hoover thermostat.

* frictionConstant (unit. Quantity (1/time)) — The friction coefficient of the Langevin thermo-
stat.

Keyword Arguments alpha_n (int or float, default=1)- Another regulating param-
eter.

class atomsmm.propagators.TwiceRegulatedGlobalNoseHooverLangevinPropagator (degreesOfFreedom,
tem-
per-
a-
ture,
n,
timeScale,
fric-
tion-
Con-
stant,
al-
pha_n=1,
split=False)
Bases: atomsmm. propagators.Propagator
This class implements a doubly-regulated version of the global Nose-Hoover-Langevin propagator [13][14]. It
provides, for every degree of freedom in the system, a solution for the following SDE system:

2
dv; = —ovpv; [1 — (U?> ] dt
C;

1 1
dv, = = (n i vIiMv — kaBT) dt — yvpdt +

nay,

2’}/]{/’BT
Q

dw,

34 Chapter 4. Python API



AtomsMM, Release 0.1.0

where ¢; = Va,nm;kT is speed limit for such degree of freedom and, by default, av,, = ntl - As usual, the

n
inertial parameter () is defined as Q = NykpT'72, with T being a relaxation time [9]. An approximate solution

is obtained by applying the Trotter-Suzuki splitting formula:

6515[: — e(&t/?)LB e(ét/2)£s eétﬁoe(5t/2)ﬁse(5t/2)£3

Each exponential operator above is the solution of a differential equation.

Equation ‘B’ is a boost, whose solution is:

1 1
vy(t) = 1)2 + 0 <T;Z vIMv — kaBT) t

Equation ‘S’ is a scaling, whose solution is:

Us,i(t)

- (@) ()

Equation ‘O’ is an Ornstein—Uhlenbeck process, whose solution is:

kgT
unt) = vhe ™ 4 /=5

(1—e2"*)Ry
where R is a normally distributed random number.
Parameters
* degreesOfFreedom (inf) — The number of degrees of freedom in the system
 temperature (unit. Quantity) — The temperature of the heat bath.
* n (int or float) — The regulating parameter.

* timeScale (unit. Quantity (time)) — The relaxation time of the Nose-Hoover thermostat.

* frictionConstant (unit. Quantity (1/time)) — The friction coefficient of the Langevin thermo-
stat.

Keyword Arguments alpha n (int or float, default=1)- Another regulating param-
eter.

class atomsmm.propagators.ExtendedSystemPropagator (parameter, mass, period, propaga-

tor, group=None)
Bases: atomsmm.propagators.Propagator

4.5 reporters

class atomsmm.reporters.ExtendedStateDataReporter (file, reportinterval, **kwargs)
An extension of OpenMM'’s StateDataReporter class, which outputs information about a simulation, such as
energy and temperature, to a file.

All original functionalities of StateDataReporter are preserved and the following ones are included:
1. Report the Coulomb contribution of the potential energy (keyword: coulombEnergy):
This contribution includes both real- and reciprocal-space terms.

2. Report the atomic virial of a fully-flexible system (keyword: atomicVirial):

4.5. reporters 35


http://docs.openmm.org/latest/api-python/generated/simtk.openmm.app.statedatareporter.StateDataReporter.html
http://docs.openmm.org/latest/api-python/generated/simtk.openmm.app.statedatareporter.StateDataReporter.html

AtomsMM, Release 0.1.0

Considering full scaling of atomic coordinates in a box volume change (i.e. without any distance
constraints), the internal virial of the system is given by

W=-— Z rijE’(rij),
i,

where E’(r) is the derivative of the pairwise interaction potential as a function of the distance
between to atoms. Such interaction includes van der Waals, Coulomb, and bond-stretching con-
tributions. Bond-bending and dihedral angles are not considered because they are invariant to full
volume-scaling of atomic coordinates.

3. Report the nonbonded contribution of the atomic virial (keyword: nonbondedVirial):
The nonbonded virial is given by
Wnb = - Z ’rijEr/lb(rij)7
(2]
where E/, (r) is the derivative of the nonbonded pairwise potential, which comprises van der
Waals and Coulomb interactions only.

4. Report the atomic pressure of a fully-flexible system (keyword: atomicPressure):

2K+ W
3V
where K is the kinetic energy sum for all atoms in the system. If keyword bathTemperature is

employed (see below), the instantaneous kinetic energy is substituted by its equipartition-theorem
average (K) = 3NatomskpT/2, where T is the heat-bath temperature.

P =

5. Report the molecular virial of a system (keyword: molecularVirial):

To compute the molecular virial, only the center-of-mass coordinates of the molecules are con-
sidered to scale in a box volume change, while the internal molecular structure is kept unaltered.
The molecular virial is computed from the nonbonded part of the atomic virial by using the
formulation of Ref. [1]:

Wiot = W — Z(rz - I‘Em) : Fiv

where r; is the coordinate of atom i, F'; is the resultant pairwise force acting on it (excluding
bond-bending and dihedral angles), and r{™ is the center-of-mass coordinate of its containing
molecule.

6. Report the molecular pressure of a system (keyword: molecularPressure):

_ 2I(mol + Wmol
B 3V ’

where K, is the center-of-mass kinetic energy summed for all molecules in the system. If
keyword bathTemperature is employed (see below), the instantaneous kinetic energy is substi-
tuted by its equipartition-theorem average (Kmo1) = 3NmoiskpT /2, where T is the heat-bath
temperature.

P

7. Report the center-of-mass kinetic energy (keyword: molecularKineticEnergy):

1 Nmol
2
Kmol - 5 § MiUcm,iv
i=1

36 Chapter 4. Python API



AtomsMM, Release 0.1.0

where Ny, is the number of molecules in the system, M; is the total mass of molecule i, and
Ucm, 18 the center-of-mass velocity of molecule i.

8. Report potential energies at multiple global parameter states (keyword: globalParameterStates):

Computes and reports the potential energy of the system at a number of provided global parameter
states.

9. Report global parameter values (keyword: globalParameters):

Reports the values of specified global parameters.

10. Report derivatives of energy with respect to global parameters (keyword: energyDerivatives):

Computes and reports derivatives of the potential energy of the system at the current state with respect to
specified global parameters.

11. Report values of collective variables (keyword: collectiveVariables)

Report the values of a set of collective variables.

12. Allow specification of an extra file for reporting (keyword: extraFile).

This can be used for replicating a report simultaneously to sys.stdout and to a file using a unique reporter.

Keyword Arguments

* coulombEnergy (bool, optional, default=False) — Whether to write the

Coulomb contribution of the potential energy to the file.

atomicVirial (bool, optional, default=False)— Whether to write the total
atomic virial to the file.

nonbondedVirial (bool, optional, default=False)— Whether to write the
nonbonded contribution to the atomic virial to the file.

atomicPressure (bool, optional, default=False) - Whether to write the
internal atomic pressure to the file.

molecularVirial (bool, optional, default=False)— Whether to write the
molecular virial to the file.

molecularPressure (bool, optional, default=False)— Whether to write
the internal molecular pressure to the file.

molecularKineticEnergy (bool, optional, default=False) — Whether
to write the molecular center-of-mass kinetic energy to the file.

globalParameterStates (pandas.DataFrame, optional, default=None) - A
DataFrame containing context global parameters (column names) and sets of values
thereof. If it is provided, then the potential energy will be reported for every state these
parameters define.

globalParameters (list (str), optional, default=None) — A list of
global parameter names. If it is provided, then the values of these parameters will be re-
ported.

energyDerivatives (list (str), optional, default=None) — A list of
global parameter names. If it is provided, then the derivatives of the total potential en-
ergy with respect to these parameters will be reported. It is necessary that the calculation of
these derivatives has been activated beforehand (see, for instance, CustomIntegrator).

4.5. reporters

37


https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.CustomIntegrator.html

AtomsMM, Release 0.1.0

* collectiveVariables (list (openmm.CustomCVForce), optional,
default=None) — A list of CustomCVForce objects. If it is provided, then the values of
all collective variables associated with these objects will be reported.

* pressureComputer (PressureComputer, optional, default=None) — A computer
designed to determine pressures and virials. This is mandatory if any keyword related to
virial or pressure is set as True.

* extraFile(str or file, optional, default=None)- Extra fileto write to,
specified as a file name or a file object.

class atomsmm.reporters.XYZReporter (file, reportinterval, **kwargs)
Outputs to an XYZ-format file a series of frames containing the coordinates, velocities, momenta, or forces on
all atoms in a Simulation.

Note: Coordinates are expressed in nanometers, velocities in nanometer/picosecond, momenta in dal-
ton*nanometer/picosecond, and forces in dalton*nanometer/picosecond”2.

To use this reporter, create an XYZReporter object and append it to the Simulation’s list of reporters.
Keyword Arguments

* output (str, default='positions')— Which kind of info to report. Valid op-
tions are ‘positions’, ‘velocities’, ‘momenta’ and ‘forces’.

* groups (set (int), default=None)-— Which force groups to consider in the force
calculations. If this is None, then all force groups will be evaluated.

class atomsmm.reporters.CenterOfMassReporter (file, reportinterval, **kwargs)
Outputs to an XYZ-format file a series of frames containing the center-of-mass coordinates, center-of-mass
velocities, total momenta, or resultant forces on all molecules in a Simulation.

Note: Coordinates are expressed in nanometers, velocities in nanometer/picosecond, momenta in dal-
ton*nanometer/picosecond, and forces in dalton*nanometer/picosecond”2.

To use this reporter, create an CenterOfMassReporter object and append it to the Simulation’s list of reporters.
Keyword Arguments

* output (str, default='positions')— Which kind of info to report. Valid op-
tions are ‘positions’, ‘velocities’, ‘momenta’ and ‘forces’.

* groups (set (int), default=None)-— Which force groups to consider in the force
calculations. If this is None, then all force groups will be evaluated.

class atomsmm.reporters.CustomIntegratorReporter (file, reportinterval, **kwargs)
Outputs global and per-DoF variables of a CustomlIntegrator instance.

Keyword Arguments describeOnly (bool, optional, default=True)— Whether to
output only descriptive statistics that summarize the activated per-Dof variables.

class atomsmm.reporters.ExpandedEnsembleReporter (file, reportinterval, states, tempera-

ture, **kwargs)
Performs an Expanded Ensemble simulation and reports the energies of multiple states.

Parameters

* states (pandas.DataFrame_) — A DataFrame containing context global parameters (column
names) and sets of values thereof. The potential energy will be reported for every state these

38 Chapter 4. Python API


docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.CustomCVForce.html

AtomsMM, Release 0.1.0

parameters define. If one of the variables is named as weight, then its set of values will be
assigned to every state as an importance sampling weight. Otherwise, all states will have
identical weights. States which are supposed to only have their energies reported, with no
actual visits, can have their weights set up to -inf.

* temperature (unit. Quantity) — The system temperature.

Keyword Arguments reportsPerExchange (int, optional, default=1) — The
number of reports between attempts to exchange the global parameter state, that is, the
exchange interval measured in units of report intervals.

state_sampling analysis (staging_variable=None, to_file=True, isochronal_n=2)
Build histograms of states visited during the overall process as well as during downhill walks.

Returns pandas.DataFrame_

4.6 systems

class atomsmm.systems.RESPASystem (system, rcutln, rswitchln, **kwargs)
Bases: simtk.openmm.openmm. System

An OpenMM System prepared for Multiple Time-Scale Integration with RESPA.
Parameters
* system (openmm.System) — The original system from which to generate the RESPASystem.

* rcutln (unit. Quantity) — The distance at which the short-range nonbonded interactions will
completely vanish.

 rswitchIn (unit. Quantity) — The distance at which the short-range nonbonded interactions
will start vanishing by application of a switching function.

Keyword Arguments

* adjustment (str, optional, default='force-switch')— A keyword for
modifying the near nonbonded potential energy function. If it is None, then the switching
function is applied directly to the original potential. Other options are ‘shift’ and ‘force-
switch’. If it is ‘shift’, then the switching function is applied to a potential that is already
null at the cutoff due to a previous shift. If it is force-switch’, then the potential is modified
so that the switching function is applied to the forces rather than the potential energy.

» fastExceptions (bool, optional, default=True)— Whether nonbonded ex-
ceptions must be considered to belong to the group of fastest forces. If False, then they will
be split into intermediate and slowest forces.

redefine_bond (fopology, residue, atoml, atom2, length, K=None, group=1)
Changes the equilibrium length of a specified bond for integration within its original time scale. The
difference between the original and the redefined bond potentials is evaluated at another time scale.

Parameters
* topology (openmm.Topology) — The topology corresponding to the original system.

* residue (str) — A name or regular expression to identify the residue which contains the
redefined bond.

» atoml (str) — A name or regular expression to identify the first atom that makes the bond.

e atom?2 (str) — A name or regular expression to identify the second atom that makes the
bond.

4.6. systems 39


http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.System.html

AtomsMM, Release 0.1.0

length (unit.Quantity) — The redifined equilibrium length for integration at the shortest
time scale.

K (unit. Quantity, optional, default=None) — The harmonic force constant for the bond. If
this is None, then the original value will be maintained.

group (int, optional, default=1) — The force group with which the difference between the
original and the redefined bond potentials must be evaluated.

redefine_angle (topology, residue, atoml, atom2, atom3, angle, K=None, group=1)

Changes the equilibrium value of a specified angle for integration within its original time scale. The

difference between the original and the redefined angle potentials is evaluated at another time scale.

Parameters

topology (openmm.Topology) — The topology corresponding to the original system.

residue (str) — A name or regular expression to identify the residue which contains the
redefined angle.

atoml1 (str) — A name or regular expression to identify the first atom that makes the angle.

atom2 (str) — A name or regular expression to identify the second atom that makes the
angle.

atom3 (str) — A name or regular expression to identify the third atom that makes the angle.

angle (unit. Quantity) — The redifined equilibrium angle value for integration at the shortest
time scale.

K (unit.Quantity, optional, default=None) — The harmonic force constant for the angle. If
this is None, then the original value will be maintained.

group (int, optional, default=1) — The force group with which the difference between the
original and the redefined angle potentials must be evaluated.

class atomsmm.systems.SolvationSystem (system, solute_atoms, use_softcore=True, soft-

core_group=0, split_exceptions=False)

Bases: simtk.openmm.openmm.System

An OpenMM System prepared for solvation free-energy calculations.

Parameters

class atomsmm

system (openmm.System) — The original system from which to generate the SolvationSys-
tem.

solute_atoms (set(int)) — A set containing the indexes of all solute atoms.

use_softcore (bool, optional, default=True) — Whether to define a softcore potential for the
coupling/decoupling of solute-solvent Lennard-Jones interactions. If this is False, then a
linear scaling of both sigma and epsilon will be applied instead.

softcore_group (int, optional, default=0) — The force group to be assigned to the solute-
solvent softcore interactions, if any.

split_exceptions (bool, optional, default=False) — Whether preexisting exceptions should
be separated from the nonbonded force before new exceptions are created.

.systems.AlchemicalSystem (system, atoms, coupling='softcore’, group=0,

use_lrc=Fualse)

Bases: simtk.openmm.openmm.System

An OpenMM System prepared for solvation free-energy calculations.

Parameters

40

Chapter 4. Python API


http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.System.html
http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.System.html

AtomsMM, Release 0.1.0

* system (openmm.System) — The original system from which to generate the SolvationSys-
tem.

* atoms (set(int)) — A set containing the indexes of all solute atoms.

» coupling (str, optional, default="softcore’) — The model used for coupling the alchemi-
cal atoms to the system. The options are softcore, linear, art, spline, or some function of
lambda_vdw. Use softcore for the model of Beutler et al. (1994), linear for a simple linear
coupling, art for the sine-based coupling model of Abrams, Rosso, and Tuckerman (2006),
and spline for multiplying the solute-solvent interactions by A3, (10 — 15\ qw + 6A2,, ).
Alternatively, you can enter any other valid function of lambda_vdw.

* group (int, optional, default=0) — The force group to be assigned to the solute-solvent
softcore interactions, if any.

* use_lrc (bool, optional, defaul=False) — Whether to use long-range (dispersion) correction
in solute-solvent interactions.

class atomsmm.systems.AlchemicalRespaSystem (system, rcutln, rswitchlin, al-
chemical_atoms=[], cou-
pling_parameter="lambda’, cou-
pling_function="lambda’', mid-
dle_scale=True, coulomb_scaling=False,
lambda_coul=0, use_softcore=False,

split_alchemical=True)
Bases: simtk.openmm.openmm. System

An OpenMM System prepared for Multiple Time-Scale Integration with RESPA and for alchemical cou-
pling/decoupling of specified atoms.

Short-range forces for integration at intermediate time scale are generated by applying a switching function to
the force that results from the following potential:

V(r) = Vise(r) = Vise(Teut,in)
Viselr) = {te | fiautr) (%) - fatutr) (%) | + Ll e |

T 47eg T

where f,, (u) is the solution of the 1st order differential equation

_ubdp,

I n du S(w)
fa(0)=1
h— T'switch,in

Tcut,in — Tswitch,in
As a consequence of this modification, V' (r) = S(u(r))V/;c(r).
Examples of coupling function are:
1. Linear coupling (default):
F) =2
2. A 5-th order polinomial whose 1st- and 2nd-order derivatives are null at both extremes.
FOO) = X3(10 — 15X + 6A%)

3. A 5-th order polinomial whose Ist-order derivative is null at both extremes and whose 2nd- and 3rd-order
derivatives are also null at A = 0:

FO) = M(5 - 4x)

4.6. systems 41


http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.System.html

AtomsMM, Release 0.1.0

4. The sine-based coupling model of Abrams, Rosso, and Tuckerman [15]:
sin (27w )
>\ = )\ e —————

ey o

Parameters

* system (openmm.System) — The original system from which to generate the SolvationSys-
tem.

* rcutln (unit. Quantity) — The distance at which the short-range nonbonded interactions will
completely vanish.

* rswitchIn (unit.Quantity) — The distance at which the short-range nonbonded interactions
will start vanishing by application of a switching function.

* alchemical_atoms (list(int), optional, default=[]) — A set containing the indexes of all al-
chemical atoms.

 coupling_parameter (str, optional, defaul="lambda’) — The name of the coupling parame-
ter.

* coupling_function (str; optional, default="lambda’) — A function f(X) used for coupling
the alchemical atoms to the system, where A is the coupling parameter. This must be a
function of a single variable named as in argument coupling_parameter (see above). It is
expected that f(0) = 0 and f(1) = 1.

* middle_scale (bool, optional, default=True) — Whether to use an intermediate time scale in
the RESPA integration.

* coulomb_scaling (bool, optional, default=False) — Whether to consider scaling of electro-
static interactions between alchemical and non-alchemical atoms. Otherwise, these interac-
tions will not exist.

* lambda_coul (float, optional, default=0) — A scaling factor to be applied to all electrostatic
interactions between alchemical and non-alchemical atoms.

reset_coulomb_scaling_ factor (lambda_coul, context=None)
Resets the scaling factor of the solute-solvent electrostatic interactions.

Parameters
* lambda_coul (floar) — The scaling factor value.

 context (Context_, optional, default=None) — A context in which the particle parameters
should be updated.

class atomsmm.systems.ComputingSystem (system)
Bases: atomsmm. systems._AtomsMM_System

An OpenMM System prepared for computing the Coulomb contribution to the potential energy, as well as the
total internal virial of an atomic system.

..warning: Currently, virial computation is only supported for fully flexible systems (i.e. without distance

constraints).

Parameters system (openmm.System) — The original system from which to generate the Comput-
ingSystem.

42 Chapter 4. Python API


http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.System.html

AtomsMM, Release 0.1.0

4.7 utils

exception atomsmm.utils.InputError (msg)
atomsmm.utils.countDegreesOfFreedom (system)

Counts the number of degrees of freedom in a system, given by:

NDOF = 3Nmovingpartic1es -3- Nconstraints

Parameters system (openmm.System) — The system whose degrees of freedom will be summed up.

atomsmm.utils.findNonbondedForce (system, position=0)
Searches for a NonbondedForce object in an OpenMM system.

Parameters

» system (openmm.System) — The system to which the wanted NonbondedForce object is
attached.

* position (int, optional, default=0) — The position index of the wanted force among the
NonbondedForce objects attached to the system.

Returns int — The index of the wanted NonbondedForce object.

atomsmm.utils.hijackForce (system, index)
Extracts a Force object from an OpenMM system.

Warning: Side-effect: the passed system object will no longer have the hijacked Force object in its force
list.

Parameters index (int) — The index of the Force object to be hijacked.
Returns openmm.Force — The hijacked Force object.
atomsmm.utils.splitPotentialEnergy (system, topology, positions, **globals)

Computes the potential energy of a system, with possible splitting into contributions of all Force objects attached
to the system.

Parameters
* system (openmm.System) — The system whose energy is to be computed.
* topology (openmm.app.topology.Topology) — The topological information about a system.
* positions (list(tuple)) — A list of 3D vectors containing the positions of all atoms.
Keyword Arguments for global context variables. (Values)-

Returns unit.Quantity or dict(str, unit. Quantity) — The total potential energy or a dict containing all
potential energy terms.

atomsmm.utils.evaluateForce (force, positions, boxVectors=None)
Computes the value of a Force object for a given set of particle coordinates and box vectors. Whether periodic
boundary conditions will be used or not depends on the corresponding attribute of the Force object specified as
the collective variable.

Parameters

* positions (list(openmm.Vec3)) — A list whose length equals the number of particles in the
system and which contains the coordinates of these particles.

4.7. utils 43


http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.Force.html
http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.Force.html
http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.Force.html
http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.Force.html
http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.Force.html
http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.Force.html
http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.Force.html

AtomsMM, Release 0.1.0

* boxVectors (list(openmm.Vec3), optional, default=None) — A list with three vectors which

describe the edges of the simulation box.

Returns unit. Quantity

Example

>>>
>>>
>>>
>>>
>>>

>>>

import afed

from simtk import unit

model = afed.AlanineDipeptideModel ()
psi_angle, _ = model.getDihedralAngles ()

psi = afed.DrivenCollectiveVariable('psi', psi_angle,

—period=360%unit.degrees)

psi.evaluate (model.getPositions())

Quantity (value=3.14159 > 3 93, unit=radian)

unit.radians,

44

Chapter 4. Python API




CHAPTER
FIVE

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

5.1 Bug reports

When reporting a bug please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

5.2 Documentation improvements

AtomsMM could always use more documentation, whether as part of the official AtomsMM docs, in docstrings, or
even on the web in blog posts, articles, and such.

5.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/atoms-ufrj/atomsmm/issues.
If you are proposing a feature:

» Explain in detail how it would work.

* Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that code contributions are welcome :)

45


https://github.com/atoms-ufrj/atomsmm/issues
https://github.com/atoms-ufrj/atomsmm/issues

AtomsMM, Release 0.1.0

5.4 Development

Prerequisites:
1. Anaconda or Miniconda
2. Conda virtualenv
3. Tox
To set up atomsmm for local development:
1. Fork atomsmm (look for the “Fork” button).

2. Clone your fork locally:

’git clone git@github.com:your_name_here/atomsmm.git

3. Create a branch for local development:

’git checkout =b name-of-your-bugfix—or-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

’tox

5. Commit your changes and push your branch to GitHub:

git add
git commit -m
git push origin name-of-your-bugfix—or-feature

6. Submit a pull request through the GitHub website.

5.4.1 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.
For merging, you should:

1. Include passing tests (run tox)'.

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG. rst about the changes.

4. Add yourself to AUTHORS . rst.

! If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.
It will be slower though ...

46 Chapter 5. Contributing


https://github.com/atoms-ufrj/atomsmm
http://tox.readthedocs.io/en/latest/install.html
https://travis-ci.org/atoms-ufrj/atomsmm/pull_requests

AtomsMM, Release 0.1.0

5.4.2 Tips

To run a subset of tests:

’tox —e envname —--— py.test =k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

’detox

5.4. Development 47



AtomsMM, Release 0.1.0

48 Chapter 5. Contributing



CHAPTER
SIX

AUTHORS

* Charlles R. A. Abreu - http://atoms.peq.coppe.ufrj.br

49


http://atoms.peq.coppe.ufrj.br

AtomsMM, Release 0.1.0

50 Chapter 6. Authors



CHAPTER
SEVEN

CHANGELOG

51



AtomsMM, Release 0.1.0

52 Chapter 7. Changelog



CHAPTER
EIGHT

GLOSSARY

ODE Ordinary Differential Equation
SDE Stochastic Differential Equation

53



AtomsMM, Release 0.1.0

54 Chapter 8. Glossary



CHAPTER
NINE

BIBLIOGRAPHY

55



AtomsMM, Release 0.1.0

56 Chapter 9. Bibliography



CHAPTER
TEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

57



AtomsMM, Release 0.1.0

58 Chapter 10. Indices and tables



[1]

(2]

(3]

[10]

[11]

[12]

[13]

BIBLIOGRAPHY

Philippe H. Hiinenberger. Calculation of the group-based pressure in molecular simulations. i. a general for-
mulation including ewald and particle-particle—particle-mesh electrostatics. The Journal of Chemical Physics,
116(16):6880-6897, apr 2002. doi:10.1063/1.1463057.

Ruhong Zhou, Edward Harder, Huafeng Xu, and B. J. Berne. Efficient multiple time step method for use
with ewald and particle mesh ewald for large biomolecular systems. The Journal of Chemical Physics,
115(5):2348-2358, aug 2001. doi:10.1063/1.1385159.

Joseph A. Morrone, Ruhong Zhou, and B. J. Berne. Molecular dynamics with multiple time scales: how to avoid
pitfalls. Journal of Chemical Theory and Computation, 6(6):1798-1804, jun 2010. doi:10.1021/ct100054k.

Ben Leimkuhler, Daniel T. Margul, and Mark E. Tuckerman. Stochastic, resonance-free multiple time-step algo-
rithm for molecular dynamics with very large time steps. Molecular Physics, 111(22-23):3579-3594, dec 2013.
doi:10.1080/00268976.2013.844369.

Masuo Suzuki. Generalized trotter’s formula and systematic approximants of exponential operators and
inner derivations with applications to many-body problems. Communications in Mathematical Physics,
51(2):183-190, jun 1976. doi:10.1007/bf01609348.

Masuo Suzuki. Decomposition formulas of exponential operators and lie exponentials with some applications
to quantum mechanics and statistical physics. Journal of Mathematical Physics, 26(4):601-612, apr 1985.
doi:10.1063/1.526596.

Haruo Yoshida. Construction of higher order symplectic integrators. Physics Letters A, 150(5-7):262-268, nov
1990. doi:10.1016/0375-9601(90)90092-3.

Masuo Suzuki. General theory of fractal path integrals with applications to many-body theories and statistical
physics. Journal of Mathematical Physics, 32(2):400-407, feb 1991. doi:10.1063/1.529425.

M. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time scale molecular dynamics. The Journal
of Chemical Physics, 97(3):1990-2001, aug 1992. doi:10.1063/1.463137.

Giovanni Bussi, Davide Donadio, and Michele Parrinello. Canonical sampling through velocity rescaling. The
Journal of Chemical Physics, 126(1):014101, jan 2007. doi:10.1063/1.2408420.

Giovanni Bussi and Michele Parrinello. Stochastic thermostats: comparison of local and global schemes. Com-

puter Physics Communications, 179(1-3):26-29, jul 2008. doi:10.1016/j.cpc.2008.01.006.

George Marsaglia and Wai Wan Tsang. A simple method for generating gamma variables. ACM Transactions on
Mathematical Software, 26(3):363-372, sep 2000. doi:10.1145/358407.358414.

Alex A. Samoletov, Carl P. Dettmann, and Mark A. J. Chaplain. Thermostats for \textquotedblleft
slow\textquotedblright configurational modes. Journal of Statistical Physics, 128(6):1321-1336, jul 2007.
doi:10.1007/510955-007-9365-2.

59


https://doi.org/10.1063/1.1463057
https://doi.org/10.1063/1.1385159
https://doi.org/10.1021/ct100054k
https://doi.org/10.1080/00268976.2013.844369
https://doi.org/10.1007/bf01609348
https://doi.org/10.1063/1.526596
https://doi.org/10.1016/0375-9601(90)90092-3
https://doi.org/10.1063/1.529425
https://doi.org/10.1063/1.463137
https://doi.org/10.1063/1.2408420
https://doi.org/10.1016/j.cpc.2008.01.006
https://doi.org/10.1145/358407.358414
https://doi.org/10.1007/s10955-007-9365-2

AtomsMM, Release 0.1.0

[14] Ben Leimkuhler, Emad Noorizadeh, and Florian Theil. A gentle stochastic thermostat for molecular dynamics.
Journal of Statistical Physics, 135(2):261-277, apr 2009. doi:10.1007/s10955-009-9734-0.

[15] Jerry B. Abrams, Lula Rosso, and Mark E. Tuckerman. Efficient and precise solvation free energies via

alchemical adiabatic molecular dynamics. The Journal of Chemical Physics, 125(7):074115, August 2006.
doi:10.1063/1.2232082.

60 Bibliography


https://doi.org/10.1007/s10955-009-9734-0
https://doi.org/10.1063/1.2232082

a

atomsmm.computers, 7
atomsmm. forces, 8
atomsmm.integrators, 12
atomsmm.propagators, 18
atomsmm.reporters, 35
atomsmm. systems, 39
atomsmm.utils, 43

C

computers (Unix, Windows), 7

f

forces (Unix, Windows), 8
[
integrators (Unix, Windows), 12

Y

propagators (Unix, Windows), 18

r

reporters (Unix, Windows), 35

S
system (Unix, Windows), 39

u
utils (Unix, Windows), 43

PYTHON MODULE INDEX

61



AtomsMM, Release 0.1.0

62 Python Module Index



A

AdiabaticDynamicsIntegrator (class in atom-
smm.integrators), 17

AlchemicalRespaSystem
smm.systems), 41

AlchemicalSystem (class in atomsmm.systems), 40

atomsmm.computers (module), 7

atomsmm. forces (module), 8

atomsmm.integrators (module), 12

atomsmm.propagators (module), 18

atomsmm. reporters (module), 35

atomsmm. systems (module), 39

atomsmm.utils (module), 43

C

(class in  atom-

CenterOfMassReporter (class in atom-
smm.reporters), 38
ChainedPropagator (class in atom-

smm.propagators), 18
computers (module), 7
Comput ingSystem (class in atomsmm.systems), 42
countDegreesOfFreedom () (in module atom-
smm.utils), 43
CustomIntegratorReporter
smm.reporters), 38

(class in atom-

D

DampedSmoothedForce (class in atomsmm.forces), 8

E

evaluateForce () (in module atomsmm.utils), 43

ExpandedEnsembleReporter (class in atom-
smm.reporters), 38
ExtendedStateDataReporter (class in atom-
smm.reporters), 35
ExtendedSystemPropagator (class in atom-
smm.propagators), 35
ExtendedSystemVariable (class in  atom-

smm.integrators), 17

F

FarNonbondedForce (class in atomsmm.forces), 10

INDEX

findNonbondedForce () (in  module  atom-
smm.utils), 43

forces (module), 8

G

GenericBoostPropagator (class in  atom-
smm.propagators), 23

GenericScalingPropagator (class in atom-
smm.propagators), 23

get_atomic_pressure () (atom-
smm.computers.PressureComputer — method),
7

get_atomic_virial () (atom-
smm.computers.PressureComputer — method),
7

get_bond_virial () (atom-
smm.computers.PressureComputer  method),
8

get_coulomb_virial () (atom-
smm.computers.PressureComputer — method),
8

get_dispersion_virial () (atom-
smm.computers.PressureComputer  method),
8

get_molecular_pressure () (atom-
smm.computers.PressureComputer — method),
8

get_molecular_virial () (atom-
smm.computers.PressureComputer — method),
8

GlobalThermostatIntegrator (class in atom-
smm.integrators), 12

Fl

hijackForce () (in module atomsmm.utils), 43

I

initialize () (atom-
smm.integrators.AdiabaticDynamicsIntegrator
method), 18

initialize () (atom-

smm.integrators.LimitedSpeedBAOABIntegrator

63



AtomsMM, Release 0.1.0

method), 16 MultipleTimeScalePropagator (class in atom-
initialize () (atom- smm.propagators), 24
smm.integrators.LimitedSpeedNHLIntegrator
method), 16 N
initialize () (atom-  NearExceptionForce (class in atomsmm.forces), 10
smm.integrators.LimitedSpeedStochasticntegratoNie arNonbondedForce (class in atomsmm.forces), 9
method), 16 NewMethodIntegrator (class in atom-
initialize() (atom- smm.integrators), 15
smm.integrators.LimitedSpeedStochasticVelocityIntegf@o¥ hodp ropagator (class in atom-
method), 17 smm.propagators), 21
initialize() (atom- NHI_R_Integrator (class in atomsmm.integrators),
smm.integrators.NewMethodIntegrator 13
method), 15 NonbondedExceptionsForce (class in atom-
initialize () (atom' Smmforces)’ 8
smm.integrators. NHL_R_Integrator — method), NoseHooverChainPropagator (class in atom-
13 smm.propagators), 27
initialize() (atom-  NoseHooverLangevinPropagator (class in atom-
smm.integrators.SIN_R_Integrator ~ method), smm.propagators), 28
15 NoseHooverPropagator (class in atom-
InputError, 43 smm.propagators), 27
integrator () (atomsmm.propagators.Propagator

method), 18
integrators (module), 12

L

Langevin_R_Integrator
smm.integrators), 13

LimitedSpeedBAOABIntegrator (class in atom-
smm.integrators), 15

LimitedSpeedLangevinPropagator (class in
atomsmm.propagators), 21

(class in  atom-

LimitedSpeedNHLIntegrator (class in atom-
smm.integrators), 16
LimitedSpeedNHLPropagator (class in atom-

smm.propagators), 21
LimitedSpeedStochasticIntegrator (class in

atomsmm.integrators), 16
LimitedSpeedStochasticPropagator (class in

atomsmm.propagators), 22

LimitedSpeedStochasticVelocityIntegrator

(class in atomsmm.integrators), 16

LimitedSpeedStochasticVelocityPropagator

(class in atomsmm.propagators), 22

M

MassiveGeneralizedGaussianMomentPropagato

(class in atomsmm.propagators), 27
MassivelsokineticPropagator (class in atom-
smm.propagators), 20
MassiveNoseHooverPropagator (class in atom-
smm.propagators), 27
MultipleTimeScaleIntegrator (class in atom-
smm.integrators), 12

O

ODE, 53
OrnsteinUhlenbeckPropagator (class in atom-
smm.propagators), 22

P

PressureComputer (class in atomsmm.computers), 7
Propagator (class in atomsmm.propagators), 18
propagators (module), 18

R

redefine_angle ()
smm.systems.RESPASystem method), 40

redefine_bond () (atomsmm.systems.RESPASystem
method), 39

(atom-

RegulatedAtomicNoseHooverLangevinPropagator

(class in atomsmm.propagators), 32
RegulatedBoostPropagator (class
smm.propagators), 29

in atom-

RegulatedMassiveNoseHooverLangevinPropagator

(class in atomsmm.propagators), 30

RegulatedTranslationPropagator (class in
atomsmm.propagators), 29

reporters (module), 35

rgset_coulomb_scaling_factor() (atom-
smm.systems.AlchemicalRespaSystem method),
42

RespaPropagator (class in atomsmm.propagators),
23

RESPASystem (class in atomsmm.systems), 39

RestrainedLangevinPropagator (class in atom-
smm.propagators), 21

64

Index



AtomsMM, Release 0.1.0

S

SDE, 53

SIN_R_Integrator (class in atomsmm.integrators),
14

SIN_R_Propagator (class in atomsmm.propagators),
25

SoftcoreForce (class in atomsmm.forces), 11

SoftcoreLennardJonesForce (class in atom-
smm.forces), 11

SolvationSystem (class in atomsmm.systems), 40

splitPotentialEnergy () (in module atom-
smm.utils), 43

SplitPropagator (class in atomsmm.propagators),

18

state_sampling_analysis () (atom-
smm.reporters.ExpandedEnsembleReporter
method), 39

SuzukiYoshidaPropagator (class in atom-
smm.propagators), 19
system (module), 39

T

TranslationPropagator (class in  atom-
smm.propagators), 19

TrotterSuzukiPropagator (class in atom-
smm.propagators), 19

TwiceRegulatedAtomicNoseHooverLangevinPropagator
(class in atomsmm.propagators), 33

TwiceRegulatedGlobalNoseHooverLangevinPropagator
(class in atomsmm.propagators), 34

TwiceRegulatedMassiveNoseHooverLangevinPropagator
(class in atomsmm.propagators), 31

U

UnconstrainedVelocityVerletPropagator
(class in atomsmm.propagators), 26
utils (module), 43

\Y

VelocityBoostPropagator (class in atom-
smm.propagators), 19

VelocityRescalingPropagator (class in atom-
smm.propagators), 26

VelocityVerletPropagator (class in atom-
smm.propagators), 26

X

XYZReporter (class in atomsmm.reporters), 38

Index

65



	Overview
	Installation
	Documentation
	Development

	Installation
	Usage
	Python API
	computers
	forces
	integrators
	propagators
	reporters
	systems
	utils

	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development

	Authors
	Changelog
	Glossary
	Bibliography
	Indices and tables
	Bibliography
	Python Module Index
	Index

